

OASIS1200E/SRL

搬送モバイルロボット

製品紹介

Oasis1200Eは、産業用搬送ロボットOasis Eシリーズの技術をベースにした、最大積載重量1200Kgのロボットです。

自社開発の第4世代コントローラーに基づく新しい電気ハードウェアソリューションを採用し、v5.0自動運転アルゴリズムを搭載し、ロボットの電気性能と安定性を向上させ、動作の安定性を大幅に高めています。

対角デュアルレーダー+フロント ビジョンセンサーによるレーザー SLAMナビゲーション技術により、 360°平面検出と前方の空間検出 を実現し、ロボットの安全性能を 高めています。

製品特徴

☑ 安全機能

360°LIDAR、3Dビジョンセンサー、 安全タッチセンサーを搭載し、低い 物体や障害物を検知して減速・停止 させることができ、安全性を確保しな がら運用することが可能です。

ふ 高い拡張性

標準的な積載モジュールとそれに対応するデバイスにより、ロボットは貨物を持ち上げたり、牽引したり、その貨物にあった方法で搬送を完了させることができます。これにより、様々な活用方法を実現することができます。

■ 狭小エリアでの作業

最小回転半径わずか600mm、面積 が小さく狭いエリアでも高速で柔 軟に稼働します。

っ フレキシブルな展開

レーザーSLAMナビゲーション技術により、マップを自動生成し、周囲の環境把握、パス編集、エリア編集をサポートします。シーンの切り替えが不要で、作業シーンや生産ラインの変更にも対応します。

☆ 環境適応性

新世代の測位アルゴリズム 5.0versionで位置制御最高 ±5mmの精度を持ち、長い通路 の測位サポート、変化のある環境 への対応、影響を低減し、ロボッ トの連続稼働を確保、顧客に価値 を創造します。

る 短期のコスト回収

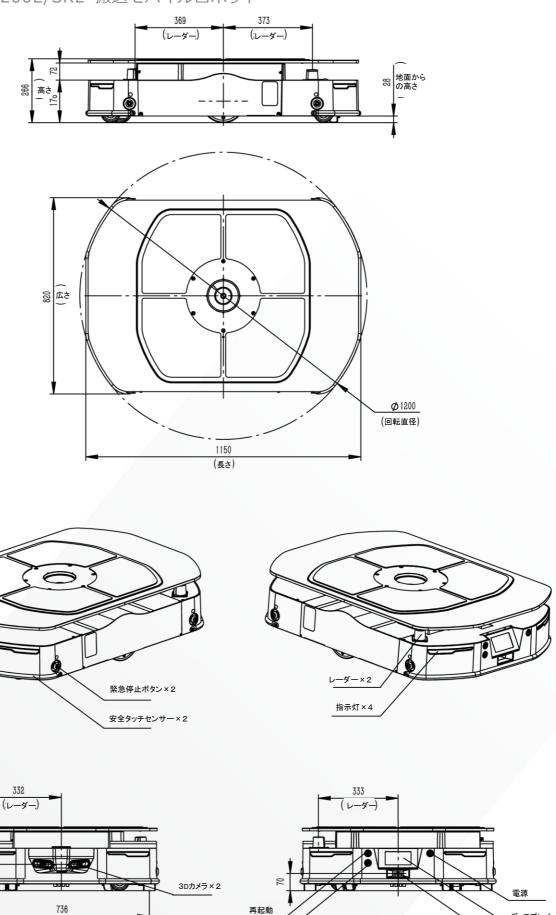
サイト修正に必要な作業量の削減、展開 効率の向上、自動化レベルの向上、人的 資源の解放、生産コストの削減を実現し ます。

製品規格表

OASIS 1200E/SRL 積載モバイルロボット

基本性能	レーダーレイアウト	対角線デュアルレーダー	
	外形寸法(L*W*Hmm)	1150*820*266	
	本体重量(kg)	295	
	積載重量(kg)	1200	パレットを含む重量
	ナビゲーションモード	レーダーSLAM	
	測位制度向上(QRコード)	オフ° ション	
		標準,5GhzWifi	802.11a/b/g/
	ネットワーク	オプション,5G通信	n28.n41,n78,n79n
運行性能	最大速度(m/s)	1.5	
	加速度(m/s²)	0.3	
	推奨速度(m/s)	前進:0.8 後退:0.3	
	回転半径(mm)	0	
	旋回半径(mm)	600	
	登板能力	3°/5%	
	障害物乗り越え高さ(mm)	10	
	溝・ギャップ幅(mm)	30	
	地上高(mm)	28	
	走行時通路幅(mm)	Min 1000	
	旋回時通路幅(mm)	Min 1400	
		±10	
		±1	
	実現できる最高位置精度(mm)	±5	
安全機能	前方レーダー	標準搭載	
	L 後方レーダー	標準搭載	
	視覚障害物回避	標準搭載	
	安全タッチセンサー	標準搭載	前後
	緊急停止ボタン	標準搭載	4個
インタ ラクティブ 機能	指示灯	標準搭載	
	音声案内	標準搭載(日本語)	
	ディスプレイ	標準搭載(日本語)	
バッテリー 機能	バッテリー容量	51.2V48Ah	リン酸リチウムバッテリー
		8	
	 バッテリー寿命(次)	DOD≥80% 1500	0.5C充電1C放電(常温)
		自動+手動	手動:最大電流10A; 自動:最大電流30A
	 充電時間* ² (h)	1.5	95%まで
動作環境	温度(℃)	0~50	33 70& C
	湿度(%)	5~95	
	空気環境	粉塵、引火性、腐食性ガスのない こと	
	室内/室外	室内	
パラメーター モジュール	定格積載重量(kg)	1200	
	昇降速度(mm/s)	4.7	
	昇降高度(mm)	55	

^{*1} 外部インターフェースの詳細については、スタンダードロボット社にお問い合わせください。

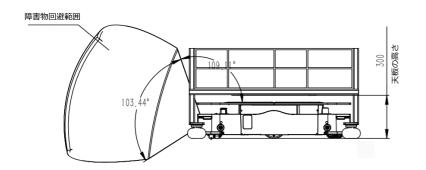

^{*2} 自動充電器を使用した場合です。

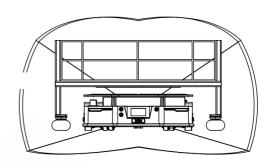
製品外寸図

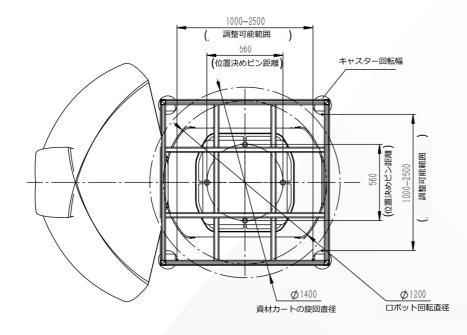
3Dカダ

(駆動輪)

OASIS 1200E/SRL 搬送モバイルロボット


解放ハッチ


ディスプレイ


自動充電口

台車外寸図

OASIS 1200E/SRL 搬送モバイルロボット

注意:

- 1 デフォルトで前方視覚障害物回避機能は装備されています*視覚障害物回避機能を持つロボットを使う場合、視野が遮られることを避けるために、車両設計時に視覚障害物回避視野を考慮することが必要です。
- 2 ロボットの標準的な天板の構成はピンなしです。*位置決めピンを使用する場合、ピンの長さを25mmとし、ピンの先端を丸くする必要がある場合があります。
- 3 台車の内側の直径がが1400mm以上である必要があります。
- 4 LIDARの視界を広範囲に遮らないようにしてください。位置決めの安定性や精度に問題が 生じる可能性があります。
- 5 ロボットの視覚的障害物回避の妨げになるようなクロスバーは、可能な限り使用しないで ください。
 - * 長辺方向の構造補強することは可能です。
 - *クロスバーが必要な場合は、170mm以上にはしないでください。また視覚による障害物回避ができないため、障害物回避はLIDARのみとなります。